
Copyright 2015 Kodewerk Ltd. All rights reserved

Java 8
New or Noteworthy!

Copyright 2015 Kodewerk Ltd. All rights reserved

• Founder and CTO of jClarity

• next gen performance diagnostic engine

• Performance tuning and training

• Helped establish www.javaperformancetuning.com

• Member of Java Champion program

• Other stuff... (google is you care to)

About Me

Copyright 2015 Kodewerk Ltd. All rights reserved

What is this?

Kodewerk
Java Performance Servicestm

Copyright 2014 Kodewerk Ltd. All rights reserved

Benchmark Alert!!!!!!

Copyright 2015 Kodewerk Ltd. All rights reserved

The Big News in Java 8

λ Expressions
LambdaParameters '->' LambdaBody

!

() -> 42

(x,y) -> x * y

(int x, int y) -> x * y

Kodewerk
Java Performance Servicestm

Copyright 2014 Kodewerk Ltd. All rights reserved

A Logging Surprise
Logging with Lambda can offer some advantages

lazy execution

for (int i = 0; i < 5000; i++) { 
 LOGGER.fine (() -> "Trace value: " + getValue()); 
}

for (int i = 0; i < 5000; i++) { 
 LOGGER.fine ("Trace value: " +
getValue()); 
}

for (int i = 0; i < 5000; i++) { 
 if (LOGGER.isLoggable(Level.FINE)) 
 LOGGER.fine ("Trace value: " + getValue()); 
}

35ms

3200ms

0ms

Copyright 2015 Kodewerk Ltd. All rights reserved

What about the other stuff?

Including Lambda’s, there are 55 JEPs assigned to Java 8

Java Enhancement Proposal

Support enhancements to the JDK

JEP 1 describes the process (http://openjdk.java.net/jeps/1)

JEP 2.0 is being worked on.

Many other smaller features or changes not mentioned in a JEP

patches to existing code and small features added

Copyright 2015 Kodewerk Ltd. All rights reserved

Nashorn

JavaScript in the JVM

First use case for adding direct support for dynamic languages in the JVM

many lessons learned in addition to those learned from other dynamic
languages

JRuby, Clojure…..

Java calls JavaScript

JavaScript calls Java

Copyright 2015 Kodewerk Ltd. All rights reserved

Tiered Compilation

C1 or Client HotSpot

C2 or Server or Optimizing HotSpot

Tiered combines the fast C1 with the deeper C2 optimizations

default in 1.8.0

may require a bigger code cache

currently not quite as stable as C1 or C2

Copyright 2015 Kodewerk Ltd. All rights reserved

Permspace Removal

Permspace is a fixed size memory pool for things that should never be
GC’ed

class meta data, vtable

method meta data

Interned String table (moved to Java heap in 1.7.0_40)

constant pool

Permspace leaks due to class relationships and references to/from
Classloaders

Copyright 2015 Kodewerk Ltd. All rights reserved

Metaspace

Metaspace is a C heap data structure designed to hold class meta data

classloader allocates one or more meta chunks in one or more virtual
spaces in the

Bootstrap

Extension

JEE Server

System

Compressed

Class Space

Copyright 2015 Kodewerk Ltd. All rights reserved

Metaspace Maintenance

Meta chunks returned to free list when classloaer is GC’ed

not scanned by GC

no individual reclamation

Virtual memory spaces returned when emptied

-XX:MetaspaceSize=<N[G,M,K,B]>

sets a high water mark for a Metaspace GC

-XX:MaxMetaspaceSize=<N>

size of Metaspace is otherwise unbounded

Copyright 2015 Kodewerk Ltd. All rights reserved

Metaspace Maintenance

Pointers to Class meta data are compressed by default

UseCompressedClassPointers

Filling CompressedClassSpace can result in an OOME

CompressedClassSpaceSize

Max size is 4G

Copyright 2015 Kodewerk Ltd. All rights reserved

Metaspace Tooling

MemoryManagerMXBean::MetaspaceManager

MemoryPoolMXBeans Metaspace and Compressed Class Space

jmap -clstats <pid>

jstat -gc <pid> or jstat -class <pid>

jcmd <pid> GC.class_stats

need to set UnlockDiagnosticVMOptions

jcmd <pid> VM.native_memory

need to turn on native memory tracking (performance hit)

Copyright 2015 Kodewerk Ltd. All rights reserved

jmap -clstat
class_loader classes bytes parent_loader alive? type
!
<bootstrap> 836 1580696 null live <internal>
0x000000076ab58ba0 18 49113 0x000000076ab3b7d8 live sun/misc/Launcher$AppClassLoader@0x00000007c0038320
0x000000076b250a00 7 31196 0x000000076ab3b7d8 live jdk/nashorn/internal/runtime/
StructureLoader@0x00000007c0067908
0x000000076bff1c28 15 91015 0x000000076ab58ba0 live jdk/nashorn/internal/runtime/
ScriptLoader@0x00000007c012c060
0x000000076ab3b7d8 770 1638365 null live sun/misc/Launcher$ExtClassLoader@0x00000007c002d338
0x000000076c6b3950 12 62501 0x000000076ab58ba0 dead jdk/nashorn/internal/runtime/
ScriptLoader@0x00000007c012c060
0x000000076afc9ed0 0 0 0x000000076ab58ba0 live java/util/ResourceBundle
$RBClassLoader@0x00000007c0071548
0x000000076c2c8d60 10 51073 0x000000076ab58ba0 dead jdk/nashorn/internal/runtime/
ScriptLoader@0x00000007c012c060
!
total = 8 1668 3503959 N/A alive=6, dead=2 N/A

Copyright 2015 Kodewerk Ltd. All rights reserved

VisualVM MemoryPoolView

Copyright 2015 Kodewerk Ltd. All rights reserved

Take aways

Class metadata is being managed differently

will have to reconsider some tuning options

You won’t see OOME Permspace anymore

you can still have classloader leaks and they will be harder to find

leak will appear in C heap (process size gets bigger and bigger)

Copyright 2015 Kodewerk Ltd. All rights reserved

Retired GC Combinations

Normal combinations

ParNew + CMS

DefNew + Serial Old

Retired

DefNew + CMS

ParNew + Serial Old

Incremential CMS

G1GC works as of 1.8.0_20, 1.7.0_51

Copyright 2015 Kodewerk Ltd. All rights reserved

HashMap Collision Handling

Collisions are handled in a balanced tree

were handled with a linked list

worst case moves from O(n) to log(N).

Linked list is reversed when resizing a map

thread performing an unsychronized reads during a resize can be trapped
in an infinite loop

symptom: burn a CPU

Copyright 2015 Kodewerk Ltd. All rights reserved

No matter how hard we’ve tried,

we’ve not been able to reproduce this

with the balance tree implementation

This does not mean you can safely use Hashmap
concurrently without synchronization

Copyright 2015 Kodewerk Ltd. All rights reserved

Stream

Defines an internal iterator over a collections

Stream operations are categorized as an intermediate or a terminator

intermediate operations produce a stream

filter with lazy evaluation of Predicates

map to intermediate values

terminal operators produce values

Copyright 2015 Kodewerk Ltd. All rights reserved

Stream Execution

Combined to form a stream pipeline

data source -> intermediate -> intermediate -> terminating

Processing starts when you hit a terminator

Easily paralellized

supported internally by providing a Splitorator

an Iterator that knows how to decompose the stream into sub-streams

Copyright 2015 Kodewerk Ltd. All rights reserved

Streams

Defined in interface Collection::stream()

Many other classes implement stream()

Arrays.stream(Object[]),

Stream::of(Object[]), ::iterate(Object,UnaryOperator)

File.lines(), BufferedReader.lines(), Random.ints(), JarFile.stream()

Copyright 2015 Kodewerk Ltd. All rights reserved

Streams

gcLogEntries.

 stream().  
 map(applicationStoppedTimePattern::matcher).  
 filter(Matcher::find).  
 mapToDouble(matcher -> Double.parseDouble(matcher.group(2))).  
 summaryStatistics();

Copyright 2015 Kodewerk Ltd. All rights reserved

Streams

gcLogEntries.

 stream().  
 map(applicationStoppedTimePattern::matcher).  
 filter(Matcher::find).  
 mapToDouble(matcher -> Double.parseDouble(matcher.group(2))).  
 summaryStatistics();

data source
start streaming

map to Matcher

filter out uninteresting bits

map group to Double
aggregate values in the stream

Copyright 2015 Kodewerk Ltd. All rights reserved

ParallelStreams

gcLogEntries.

 parallelStream().  
 map(applicationStoppedTimePattern::matcher).  
 filter(Matcher::find).  
 mapToDouble(matcher -> Double.parseDouble(matcher.group(2))).  
 summaryStatistics();

data source
submit job Task to Fork-Join

map to Matcher

filter out uninteresting bits

map group to Double
aggregate values in the stream

Copyright 2015 Kodewerk Ltd. All rights reserved

Fork-Join

Support for Jork-Join was put into JDK 7.0

difficult coding idiom to master

Streams combined with Lambda’s make this framework more reachable

 how fork-join works and performs is important to your latency

Copyright 2015 Kodewerk Ltd. All rights reserved

Fork-Join

Apply to a ParallelStream

break the stream up into chunks and submit each chunk as a ForkJoinTask

apply filter().map().reduce() to each ForkJoinTask

Call ForkJoinPool.get() to retrieve results

Copyright 2015 Kodewerk Ltd. All rights reserved

Fork-Join Performance

Fork Join comes with significant overhead

each chunk of work must be large enough to amortize the overhead

C/P/N/Q performance model

 C - number of submitters

 P - number of CPUs

 N - number of elements

 Q - cost of the operation

Kodewerk
Java Performance Servicestm

Copyright 2014 Kodewerk Ltd. All rights reserved

C/P/N/Q

Need to offset the overheads of setting up for parallelism

NQ needs to be large

Q can often only be estimated

N often should be > 10,000 elements

C may not be your limiting constraint

Copyright 2015 Kodewerk Ltd. All rights reserved

Kernel Times

CPU will not be the limiting factor when

CPU is not saturated

kernel times exceed 10% of user time

!

In this case adding more threads will make the situation worse!

predicted by Little’s Law

Copyright 2015 Kodewerk Ltd. All rights reserved

Common Thread Pool

Fork-Join by default uses a common thread pool

default number of worker threads == number of logical cores

!

Performance is tied to which ever you run out of first

availability of the constraining resource

number of ForkJoinWorkerThreads

Kodewerk
Java Performance Servicestm

Copyright 2014 Kodewerk Ltd. All rights reserved

ForkJoinPool
 public void parallel() throws IOException {

!

 ForkJoinPool forkJoinPool = new ForkJoinPool(10);

 String<String> stream = Files.lines(new File(gcLogFileName).toPath());

 forkJoinPool.submit(() ->

 stream.parallel().

 map(applicationStoppedTimePattern::matcher).

 filter(Matcher::find).

 mapToDouble(matcher -> Double.parseDouble(matcher.group(1))).

 summaryStatistics().toString();

 }

Copyright 2015 Kodewerk Ltd. All rights reserved

Little’s Law

Fork-Join is a work queue

work queue behavior is typically modeled using Little’s Law

States that number of task in a system equals the arrival rate times the
amount of time it takes to clear an item

Example: System has a requirement of 400 TPS. It takes 300ms to process
a request

Number of tasks in system = 0.300 * 417 = 125

Copyright 2015 Kodewerk Ltd. All rights reserved

Components of Latency

Latency is the time from stimulus to result

internally latency consists of active and dead time

!

If (thread pool is set to 8 threads) and (task is not CPU bound)

task are sitting in queue accumulating dead time

make thread pool bigger to reduce dead time

Copyright 2015 Kodewerk Ltd. All rights reserved

From The Previous Example

125 tasks in system - 8 active = 117 collecting dead time

!

Conclusion:

!

if there is capacity to cope then

 make the pool bigger

else

 add capacity or tune to reduce strength of the dependency

Copyright 2015 Kodewerk Ltd. All rights reserved

Instrumenting ForkJoinPool

We can get the statistics needed from ForkJoinPool needed for Little’s Law

need to instrument ForkJoinTask::invoke()
public final V invoke() {!
 ForkJoinPool.common.getMonitor().submitTask(this);!
 int s;!
 if ((s = doInvoke() & DONE_MASK) != NORMAL)!
 reportException(s);!
 ForkJoinPool.common.getMonitor().retireTask(this);!
 return getRawResult();!
}

Collect invocation interval and service time

code is in Adopt-OpenJDK github repository

Copyright 2015 Kodewerk Ltd. All rights reserved

Performance Implications

In an environment where you have many parallelStream() operations all
running concurrently performance maybe limited by the size of the common
thread pool

Can adjust the size of the default ForkJoinPool

-Dutil.concurrent.ForkJoinPool.common.parallelism=N

java.util.concurrent.ForkJoinPool.common.threadFactory

java.util.concurrent.ForkJoinPool.common.exceptionHandler

Runtime.getRuntime().availableProcessors();

Copyright 2015 Kodewerk Ltd. All rights reserved

Performance Implications

Can submit to your own ForkJoinPool

must call get() on pool to retrieve results

beware: performance will be limited by the constraining resource

not an officially supported idiom

new ForkJoinPool(16).submit(() -> ………).get()

Copyright 2015 Kodewerk Ltd. All rights reserved

Performance Implications
Constraining Resource: I/O!
Logical Cores: 8!
ThreadPool: 8

Tasks!
Submitted

Time in!
ForkJoinPool!

(seconds)

Inter-request!
Interval!

(seconds)

Expected
Number of
Tasks in!

ForkJoinPool

Total Run Time!
(seconds)

Lambda Parallel 20 2.5 2.5 1 50

Lambda Serial 0 6.1 0 0 123

Sequential Parallel 20 1.9 1.9 1 38

Concurrent Parallel 20 3.2 1.9 1.7 39

Concurrent Flood (FJ) 20 6.0 1.9 3.2 38

Concurrent Flood (stream) 0 2.1 0 0 41

Copyright 2015 Kodewerk Ltd. All rights reserved

Performance Implications
Constraining Resource: CPU!
Logical Cores: 8!
ThreadPool: 8

Tasks!
Submitted

Time in!
ForkJoinPool!

(seconds)

Inter-request!
Interval!

(seconds)

Expected
Number of
Tasks in!

ForkJoinPool

Total Run Time!
(seconds)

Lambda Parallel 20 2.8 2.8 1 56

Lambda Serial 0 7.5 0 0 150

Sequential Parallel 20 2.6 2.6 1 52

Concurrent Parallel 20 5.8 3.0 1.9 60

Concurrent Flood (FJ) 20 43 6.5 6.6 130

Concurrent Flood (stream)
0 3.0 0 0 61

Copyright 2015 Kodewerk Ltd. All rights reserved

Take Aways

Going parallel might not bring you the gains you expect

you may not know this until you hit production!

Monitoring internals of JDK is important to understanding where
bottlenecks are

JDK is not all that well instrumented

You need to re-read the javadocs even for your old familiar classes

API’s have changed to support streams

Copyright 2015 Kodewerk Ltd. All rights reserved

CPU Layout

CPU 0

L1 Cache
(32KiB/32K1B)

L3 Cache
(4MiB)

L2 Cache
(256KiB)

CPU 1

L1 Cache
(32KiB/32K1B)

L2 Cache
(256KiB)

CPU 2

L1 Cache
(32KiB/32K1B)

L2 Cache
(256KiB)

CPU 3

L1 Cache
(32KiB/32K1B)

L2 Cache
(256KiB)

i7 Haswell Model 4xxx

Copyright 2015 Kodewerk Ltd. All rights reserved

CPU Caches and Cache Lines

L1 Cache
(32KiB/32KiB)

CL 0
CL 1
CL 2

CL 512

...

L2 Cache
(256KiB)

CL 0
CL 1
CL 2

CL 4096

...

L3 Cache
(4Mib)

CL 0
CL 1
CL 2

CL 65536

...

CPU caches are tables of cache lines

Cache line is a fix size block of data

minimum chunk size data a CPU
cache will work with

common size is 64 bytes

CPU caches include

data, instruction, and TLB

Copyright 2015 Kodewerk Ltd. All rights reserved

MESI

One of many memory models that describes how to treat cache lines

Cache line can be in one of four states

Modified, Exclusive Shared, Invalid

A cache line loaded into CPU 0’s L1/L2 cache will be marked Exclusive

If loaded into another CPU’s L1/L2 cache, it will be marked shared

Copyright 2015 Kodewerk Ltd. All rights reserved

Writes Are Expensive

Before a CPU writes to a Shared cache line, it must first call for a RFO

read for ownership

Before a CPU can write to an Exclusive cache lines if must first snoop all
other reads

Modified cache lines will be written to a store buffer

Invalid cache lines must be refreshed

store buffers must be drained (fence)

Copyright 2015 Kodewerk Ltd. All rights reserved

Java and Cache Lines
Several Java primitives or OOPs will fit into a single cache line

CPU’s unit of atomicity > Java’s unit of atomicity

Java’s classloader will reogranize and pack data

doubles long 8 bytes

int floats 4 bytes

shorts char 2 bytes

booleans byte 1 byte

references 4 or 8 bytes

Repeat for subclasses

Copyright 2015 Kodewerk Ltd. All rights reserved

Classloading
public class foo {

 private long v1;

 private int v2, v3,

 private Object v4;

 private double v5;

……

v1 v4v2 v3v5

-XX:+PrintFieldLayout (debug build only)

@140 --- instance fields start ---

@140 "v5" D;

@148 "v1" J;

@156 "v2" I;

@160 "v3" I;

@164 "v4" Ljava.lang.Object;

@172 --- instance fields end ---

@172 --- instance ends ---

Cache line

Copyright 2015 Kodewerk Ltd. All rights reserved

False Sharing
Two unrelated variables end up in the
same cache line

thread 0 modifies one variable

thread 1 modified the other variable

Each thread invalidates each others
copy of the cache line

results in excessive numbers of cache
misses, drop in retirement rates

Diagnose using MSRs

Copyright 2015 Kodewerk Ltd. All rights reserved

Solution

Arrange falsely shared variables so they don’t end up in the same cache
line

place falsely shared variables into a subclass or superclass relationship

add padding in-between the variables

doesn’t work in Java 7 as DVE will JIT away the padding

@Contended annotion

Copyright 2015 Kodewerk Ltd. All rights reserved

@Contended

Two flags involved

RestrictContended

default true

restricts @Contended annotation to JDK (trusted) classes

EnableContended

default true

enables @Contended annotation support

Copyright 2015 Kodewerk Ltd. All rights reserved

Using @Contended

Suggests that a variable should be isolated from other variables

!

!

!

!

!

Requries that annotations be operable on any Java type (new to Java 8)

public class Point {

 int x;

 @Contended

 int y;

}

Copyright 2015 Kodewerk Ltd. All rights reserved

Performance

1 thread not padded: 0.532 seconds

CPU consumption: 100%

1 thread padded: 0.522 seconds

CPU consumption: 100%

8 threads not padded: 8.31

CPU consumption: 800%

8 thread padded: 1.29

CPU consumption 800%

Copyright 2015 Kodewerk Ltd. All rights reserved

Take Aways

False sharing is hard to detect

currently no reliable tooling

L2/L3 Cache hit/miss ratios and Instruction retirements rates

Normally only part of a bottom up tuning regime

low latency

Test affected code in isolation

Need to adjust code to fit the hardware

runs coutner to “normal” thinking for Java developers

Copyright 2015 Kodewerk Ltd. All rights reserved

Things I Would Have Liked to Cover

jdeps, a tool to discover your applications dependencies

New Date and Time (based on JODA Time)

A whole bunch of concurrency stuff

stamped lock, hires counters

updates to Unsafe (fences)

And more……..

Copyright 2015 Kodewerk Ltd. All rights reserved

Performance Seminar

www.kodewerk.com

Jav
a P

erf
orm

anc
e T

uni
ng,

May
26-

29,
Chan

ia G
ree

ce

